Banha University
 Faculty of Engineering at Shoubra

?
Computer Aided Design
$3^{\text {rd }}$ Year Communications
(2015-2016)

Sheet 2

Exercise 1

In the following program, Can you run the code in part 1 and then the code in part 3?

```
clear; clc;
%part 1
x1=10
y1= x1.^2
%part 2
x2=20
y2= 3*x2.^3
%part 3
x3=30
y3 = 5*x3.^2 + 4*x2
```


Exercise 2

Explain why the following Matlab code is incorrect:

```
number_of_red_and_new_cars_that_have_been_used_in_the_year_2007_by_Chris_are=10
number_of_red_and_new_cars_that_have_been_used_in_the_year_2007_by_John_are = 11
```


Exercise 3

Write a Matlab program to evaluate r using the minimum number of parentheses, where $\mathrm{x}=2, \mathrm{y}=3, \mathrm{z}=4$.

1. $r=\frac{x+\frac{y}{z}}{y^{2}}-1$
2. $r=\frac{x+\frac{y}{z}}{y^{2}+3 z}-1$
3. $r=\frac{e^{\cos (2 x)+1}+2 x}{\ln \left(x^{2}+1\right)+2}$
4. $r=\tan ^{-1}\left(x \tan \left(x^{\frac{1}{3}}\right)\right)$
5. $r=\frac{-x+\sqrt{x^{2}-4 y z}}{2 y}$
6. $r=\frac{\frac{\cos (2 x+1)+2}{3 x^{2}-4}}{\frac{2 \sqrt{y}}{\sin ^{-1}(0.1 z)}}$

Exercise 4

Write the mathematical expression to find r that is equivalent to the following Matlab program, where $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=4, \mathrm{~d}=5$.
7. $r=(a+1) / b^{\wedge} 2-3$
8. $r=a+1 / b^{\wedge} 2-3$
9. $r=a+1 /\left(b^{\wedge} 2-3\right)$
10. $r=a+\left(1 / b^{\wedge} 2-3\right)$
11. $r=a+1 /\left(b^{\wedge} 2\right)-3$
12. $r=(a+b) /(c+d)^{\wedge} 2$
13. $r=\cos \left(2^{*} a^{\wedge} 2\right)^{\wedge} 3 / b-4$
14. $r=10 g(a \cos (0.2 \star b)+\sin (a))$
15. $r=10 g(a \cos (0.2 * b))+\sin (a)$

Exercise 5

Explain the operation of the Matlab commands:

$$
\begin{array}{lll}
x=-1 ; & x=1 ; & x=1 ; \\
y=2 ; & y=2 ; & y=-2 ; \\
r=x \& \sim y ; & m=(x>y) \mid(y<-x) ; & n=(x>y) \&(y<x)
\end{array}
$$

Exercise 6

Write a Matlab command that creates a vector of the odd whole numbers between 11 and 21 using the linear method.

Exercise 7

Write a Matlab command that creates the following vectors using the linear spacing method.

1. $\mathrm{x}=[-5,-4,-3,-2,-1,0,1,2,3,4,5]$.
2. $y=[5,4,3,2,1,0,-1,-2,-3,-4,-5]$.
3. $\mathrm{z}=[10,8,6,4,2,0,-2,-4]$.
4. $\mathrm{r}=[1 / 2,1 / 4,1 / 6,1 / 8]$.
5. $s=[0,1 / 2,2 / 3,3 / 4,4 / 5]$.

Exercise 8

Write a Matlab command that creates the following vectors using the linear spacing method and the linear method.

1. $x=[-5+i 5,-4+i 4,-3+i 3,-2+i 2,-1+i 1]$.
2. $y=[1 / 2,1 / 4+i 1 / 2,1 / 6+i 2 / 3,1 / 8+i 3 / 4,1 / 10+i 4 / 5]$.

Exercise 9

Explain the operation and the output of the following Matlab commands:

1. $x=2: 20$;
$a=\operatorname{find}(x>2,4)$;
$b=x(a)$;
```
2. c=find(x>= 10, 4,'first');
    d = x(c);
3. e=find(x ~ = 2, 12, '1ast');
f=x(e);
```


Exercise 10

Given a vector $\mathrm{x}=[3,11,-9,-13,-1,1,-11,9,-6,-2]$, write the Matlab command(
s) that will do the following:
a) Use the find Matlab function b) Do not use the find Matlab function.

1. Set values of x that are multiples of 3 to the value 3 . Hint: Use the Matlab function rem.
2. Multiply the values of x that are even by 5 .
3. Extract the values of x that are greater than 10 into a vector called y.
4. Set the values in x that are less than the mean of x to 0 .
5. Set the values in x that are above the mean to their difference from the mean.
6. Set the values of x that are positive to -1 .

Exercise 11

Let a vector $\mathrm{x}=[1,2,3,4,5,6,7,8,9,10]$. Write Matlab command(s) to do the following:

1. Add 10 to each element in x. Assign the result to a new vector m.
2. Add 3 to only the odd-index elements of x, that is, the result should now be equal to $[4,2,6,4,8,6,10,8,12,10]$. Assign the result to a new vector r.
3. Compute the square root of each element in x. Assign the result to a new vector s.
4. Compute the square of each element in x. Assign the result to a new vector t.

Exercise 12

Write the Matlab commands that produce the following figure. Hint: Use the Matlab command axis to scale the horizontal and vertical axis of the figure.

